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Phase ordering of conserved vectorial systems with field-dependent mobility
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The dynamics of phase-separation in conserved systems wi{lgh continuous symmetry is investigated
in the presence of an order-parameter-dependent mobllijig} =1 — ag?. The model is studied analytically
in the framework of the larg& approximation and by numerical simulations of the=2, N=3, andN=4
cases ind=2, for both critical and off-critical quenches. We show the existence of a universality claas for
=1 characterized by a growth law of the typical lengttt) ~t# with dynamical exponert=6 as opposed
to the usual valug=4, which is recovered foa<1.[S1063-651X98)16609-9

PACS numbef): 05.70.Fh, 64.60.Cn, 64.60.My, 64.75)

I. INTRODUCTION associated with a growth law of the domain sizg) ~t?,
with z=4. The second consists in the evaporation of mol-
The phase-separation kinetics of conserved systemscules from large curvature regions of domain interfaces and
quenched from a high-temperature disordered state into thieir subsequent diffusion through the other phase towards
ordered region of the phase diagram is usually modeled bless curved interface portions. It is often called also Lifshitz-
the Cahn-Hilliard[1] equation for the order parameter field S|yozov or evaporation-condensation mechanism; the growth

d(xt)={d.(x,1)} (With a=1,... N), exponent isz=3 [5]. Since bulk diffusion is an activated
process and surface diffusion is not, an interesting phenom-
M’“—(X’t) =V{ M(qb)V[ F(¢) ] . (1) enology occurs when the temperature is changed. Forhigh
ot o, (but still T<T,), one observes only bulk diffusiorz€ 3),

which is faster than the other mechanism. When the tempera-

ture is lowered, bulk diffusion is strongly suppressed due to

its activated nature; it is therefore possible to observe a

preasymptotic regime dominated by surface diffusian (

=4). This crossover is reproduced by the continuum equa-

tions with nonconstant mobilit{3,4], when the parameter

is varied. At the coarse-grained level of the continuum equa-
M()x1—a(T)p? (2)  tions, this again can be understood by observing that while

for shallow quenchesa<1l) M(¢) remains finite in the
is more appropriatea(T)—1 for temperaturel —0, while  whole system, the situation is different when deep quenches
a(T)—0 for T—T,. For vectorial systems it is natural to are considered. Whea= 1, the mobility vanishes within do-

In Eq. (1), F(¢) represents an ) symmetric free-energy
functional with ground state inp?/N=(1/N)=N_ #2=1
and M (¢) is the mobility. Although in the original work of
Cahn and Hilliard a constarll was proposed, it has been
subsequently arguefP] that, for scalar systems, a field-
dependent mobility

generalize Eq(2), considering a mobility mains and suppresses bulk transport; sikides) =1 on do-
) main boundaries, the motion of interfaces is instead unaf-
¢ fected.
M(g)1-a(T) N © Despite the formal analogy of E@l) for scalar and vec-

torial fields, the underlying coarsening mechanisms are in
Phase-ordering in the presence of nonconstant mobilitprinciple different, as a consequence of the different symme-
has recently been studied with=1 [3,4], showing a richer try of the ground state. However, fdt<d one has stable
behavior with respect to the usual case with constdnt localized topological defects, of which domain walls are the
From a microscopic point of view it is easy to understand thescalar counterpart. With constant mobility, defects play in
existence of two different coarsening mechanisms in theectorial systems exactly the same role of surfacesNor
separation of binary mixtures, which is the typical realization=1: Phase-ordering proceeds for long times by reduction in
of a scalar conserved phase-ordering system. The first is suheir typical radius of curvaturéf they are extendedor via
face diffusion, namely the diffusion of molecules along do-mutual annihilation of defect-antidefect paiffer point de-
main walls in order to minimize the interfacial energy, and isfects. This analogy, however, is not complete: It is not clear
what are in the vectorial case the coarsening mechanisms
corresponding to surface and bulk diffusion; it is not even
*Electronic address: corberi@na.infn.it clear that two different mechanisms must exist at all. Fur-
"Electronic address: claudio@ictp.trieste.it thermore, whefN>d no stable localized defects are present
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and the coarsening process has evidently a different natury Eq. (6) and hereafter{ ) means ensemble averages, that
even if the growth exponent is the same. is, over the stochastic initial conditions, since Eg). is de-

In this paper we consider the phase-ordering kinetics of aerministic. If them,, are equalfor critical quenchesall the
vectorial field with a nonconstant mobility. We report resultscomponents of the structure factor are equivalent and the
obtained numerically id=2 for the caseN=2, as a para- index « will be dropped.
digm of systems with topological defects, and the cddes
=3 and 4, where stable defects are absent. We also study Il. THE LARGE- N MODEL
analytically the soluble largB-model. Interestingly, we find

that the global picture is the same frdi=2 up toN=, In this section we present the analytical solution of the
and perfectly analogous to the scalar case. More preciselyectorial model in the limit of an infinite number of compo-
while for a<1 the power growth law.(t)~t ™ is obeyed  pents of the order parameter field. Although it has been
asymptotically withz=4, witha=1 a new value of the dy- gnown[6] that the nature of the dynamical process is differ-
namical exponenez=6 is observed asymptotically, corre- ent whenN is strictly infinite, the signature of this being the
sponding to a lower growth rate, in analogy with the caseyytiscaling symmetry obeyed by the structure factor, the
N=1. Fora=1, thez=6 exponent is expected to be ob- gioha| picture provided by this model is often qualitatively
served preasymptotically before a crossover leads=td. adequate and predicts the correct dynamical expondot
These results are found both for critical and off-critical N> 1 Here it will be shown that the nontrivial behavior of
quenches. _ o systems with nonconstant mobility, which is due to the in-
From these results it turns out that the similarity betweer{ermay between the different coarsening mechanisms, is
ordering in scalar and vectorial systems is very strong. Alsqu"y reproduced by the largh model. ’
for N>1, the dynamic exponeuatis changed by the depth of [t ys consider a process where symmetry breaking can

the quench in the presence of a nonconstant mobility. Thige induced along one direction by virtue of an asymmetric
close analogy is not limited to fields supporting topologicaljnitial condition

defects but is instead valid for any number of components of

the order parameter. m;#0, mg=0 {B=2,...N}. (7
The paper is organized as follows: In Sec. Il the model is
described; in Sec. Il the solution of the larbemodel is In the largeN limit the evolution equations for the longi-

presented; in Sec. IV the results of numerical simulations ofudinal and transverse components of the structure féster
two-dimensional systems witNl=2, N=3, andN=4 are the Appendix read
presented and compared to the caBesl andN=o; in

i i dCq(k,t
Sec. V we summarize the results and draw our conclusions. z(t ) —2{1-a[S, (1) + m2]}k2
Il. THE MODEL X[—k?+1—-S, (1)—3mZ]Cy(k,t), (8)
We consider a system with a vectorial order parameter
&(x,1) initially prepared in a configuration sampled from a JC, (k1) _2{1-a[S, () + m]}K2
high-temperature uncorrelated state with expectation values at L 1
($a(x,0))=N"m, and (¢,(x,0)hs(x",0))=A3,58(x
—x'). Fort=0 the time evolution is governed by the noise- X[—K*+1-S () —mi]Ci(kt), (9

less Langevin equatiofi), whereM () is given by Eq.(3),

andF{¢} is assumed in the Ginzburg-Landau form: where C, refers to the correlations along the symmetry

breaking directiong=1, andC, is the structure factor along

1 1 1 one of the equivalent transverse directioss(t) can be
F{‘b}:f dx §|V¢|2_§¢2+ m(qbz)Z} (4)  computed self-consistently through
With these positions the equation of motion for the order S, (t :f 5C(kb), (10)
parameter field reads k|<a(2T)

whereq is a phenomenological ultraviolet momentum cutoff.

2
M“_(X’t)zvul_ad’ (x.t) V[—V%a(x,t)—(ﬁa(x,t) Equation (9) together with the self-consistency relation
at N (10) governs the dynamics in the larfjemodel. These equa-
1 tions apply to off-critical and critical quenchem{=0) as
+ Nqbz(x,t)d)a(x,t) ] (5)  well; in the latter case only one equation is required since

Egs.(8) and(9) coincide. Notice that Eq9) for C, does not

L ) contain C; and, therefore, with a high-temperature disor-
The central quantity in the study of the dynamical procesyared initial conditionC, (k,0)=A can be formally inte-
described above is the structure factor, namely the Fourieérated yielding

transform of the pair connected equal time correlation func-
tion, defined by Cl(k,t):Ae7k4A4(t)+k2g2(t), 11

Ca(kyt):<¢a(kvt)¢a(_kit)>_Nmi5(k)' (6) where the IengthS
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1/4 2.0

f (12) e—o N=3;
— N=4 ;
+—aN=3;
o——o N=4;

t
A(t)=[ZJO{l—a[SL(T)ﬂLmE]}dT

[ R )
[y
- =00

t 1/2
c<t>=[2f0{1—sl<7>—mi}{l—a[si(mmi]}dr} ol
(13)

L)

have been introduced. For long times the structure factor i

sharply peaked around
0.0 |

L(t)

Kpy=—=—>— (14
" 2A
allowing a saddle point evaluation of the integral over mo- 10 =
menta in Eq.(10), which yields ’ ) In (0
S(t)~AL ~9(t)el Wt (15) FIG. 1. The growth law of the characteristic lengtlft) is

shown for systems wittN=3 andN=4. Straight lines represent

For long times, convergence towards thermodynamic equiPower lawst'” with z=4 andz=6.
librium requires the order parameter to approach the mini-
mum of the local part of the free enerdgy), which is for  discussed largét model. In order to fulfill this program, we
¢’=N. Hence, setting, (t)=1—m? asymptotically in Eq. have chosemi=2 andN=2 or N=3 and 4 so that we can
(15), one has analyze systems with and without stable topological defects.
The numerical solution of E(5) is obtained by simple
L(t) iteration of the discretized equation on a X212 mesh,
Iy (16)  except for the off-criticaN=2, a=1 case, which is com-
[4dInL(1)] puted on a 258256 lattice. Each quench is averaged over
three different realizations of the initial conditions. The nu-
merical solution of Eq(5) is particularly delicate foa<1,
because in this case a small error in the calculatiog af
the bulk may give rise to a negati\( ¢), thus producing a
spurious instability. We have avoided this problem by letting
M(¢)=|1—ad¢?|, and tested that this does not produce any
gignificant difference in the results.
The characteristic growing length(t) is obtained from
the structure factor as(t) = kl_l(t), where

A(t)

Two different cases must then be considered, nansetyl

or a=1. Fora<1, one immediately obtains from E¢l2)
A(t)~tY4 which yields £(t)~(tInt)¥* due to Eq.(15).
Hence the physical Ienglh(t)~k;]1(t) associated with the
peak of the structure factor grows bét) ~[t/In(t)]** With
a<1, therefore, the asymptotic behavior is the same as for
largeN system with constant mobilitj7], as expected. No-
tice the logarithmic correction with respect to the power-law
growth obeyed by systems with finit¢ which is due to the
multiscaling symmetry ofC(k,t); the dynamical exponent

tze:m43 is known to be correct for all physical vectorial sys- j dk kO(k.t)
Let us consider now the case=1. In this case, by match- ki(t) = ——— 17)
ing Egs.(12), (13), and (16) one finds a different solution f dk C(k,t)

characterized by (t)~tY® (Int)¥*? and £(t) ~tY5(Int)*3,

which yieldsL (t)~ (t/Int)¥6. With a=1, therefore, the van-

ishing of the mobility in equilibrated regions slows down the is the first moment oC(k,t).

dynamics and changesfrom 4 to 6, similarly to the scalar

case where one goes from the Lifshitz-Slyozov evaporation A N=3 and N=4

condensation mechanism, associated with3, to z=4. It ) ] ) )

must be noticed, however, that, apart from this analogy, the 'n Fig. 1, the behavior ot.(t) is compared in the two
physics of the coarsening process is very different due to the@sesa=0 anda=1, for critical quenches wittN=3 and
absence of stable topological defects ford and there is N=4. After the linear instability is ovewhich corresponds

no clear indication of the nature of the transport mechanisnf© times up to In)=4], the system enters the asymptotic
associated witlz=6. regime, which is characterized by a power-law growth of

L(t). For a=0 one hasz=4 with good accuracy almost
immediately, while fora=1 a convergence towards=6 is
observed. Best-fit estimates for times larger than3000

In this section, we present the results of the numericayield z=3.92 andz=3.89 fora=0 andN=3 andN=4,
solution of Eq.(5). Our aim is to present a rather complete respectively; fora=1, instead, one hag=>5.68 andz
description of the effect of a nonconstant mobility in systems=5.81 in the corresponding cases. We notice, by the way,
with a different number of components and to compare théhe remarkable superposition of the curves witk3 and
results with what is known foN=1 and with the above N=4.

IV. SYSTEMS WITH FINITE N
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FIG. 2. The evolution ofZ(k,t) is shown at different times for

k

X

FIG. 4. Data collapséscaling ploj for a=0 andN=3. Here

a=0 andN=3. The straight line represents a power-law decayL(t)de(k,t) is plotted againsk=KkL(t) for different times.

k™.

factor, which is shown in Figs. 2 and 3, fir=3, at different

both fora=0 and fora=1, and will be studied elsewhere
It is interesting to observe the evolution of the structure[9].

In Figs. 4 and 5, the data collapse fotk,t) is presented.

times fora=0 anda=1, respectively. Here one observes, Here, five curves corresponding to about 1.5 decades in time
immediately after the linear instability corresponding to theare superimposed by plottind.(t) 9C(k,t) against x
exponential growth of a peak at constant wave vector, the=kL(t). We observe that foa=0 the data collapse is very
formation of a rather well developed power-law decay ofgood forx=<2, whereas it becomes progressively less accu-

C(k,t) for largek; this tail is initially formed at very large

rate for increasing values af This effect is probably due to

values ofk, subsequently it moves towards lower wave vec-the remnant of the power-law tail that, for the times covered
tors and then gradually disappears as time increases, beiby the numerical solution, has not completely disappeared,
replaced by a fastgexponentigl decay of the structure fac- as can be seen from Fig. 2. In any case the data are consistent
tor. As Fig. 2 shows, the exponent of this decay is very closavith the existence of the scaling property both &+ 0 and

to 5 in accordance with the existence of a generalized Paa=1. In Fig. 6, the scaling functions of the cases0 and

rod’s tail, i.e., C(k,t)~k~(N*9 [8]. It is well known that

a=1 are compared. The scaling function is obtained here as

Porod’s tail is associated with the presence of localized tot (ty;) “9C(k,ty), ty being the longest time of our compu-
pological defects. The presence of such a tail in Figs. 2 and ation. It has been shown [d] that no significant differences
suggests, therefore, that defects are formed at early time arate observed in the scalar case between the two scaling func-
eventually decay so that the power law disappears asymptotiions, a fact that indicates the independence of the morphol-
cally. This phenomenon is displayed, with similar features,ogy of the growing phases with respect to a change of the
coarsening mechanism from bulk to surface diffusion. Figure
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FIG. 3. The evolution ofc(k,t) is shown at different times for
a=1 andN=3. The straight line represents a power-law decay FIG. 5. Data collapséscaling plo} for a=1 andN=3. Here
L(t)~9C(k,t) is plotted againsk=kL(t) for different times.
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FIG. 6. Comparison_ between the scaling functionsNer3 and FIG. 8. The evolution ofc(k,t) is shown at different times for
a=0 ora=1. The straight line represents the power lefw a=0 andN=2. The straight line represents a power-law decay
k4.
6 shows that the same property is shared by our vectorial _ . . _
model. Notice also that(k,t)~k* for smallk [10]. about the possible existence of a scaling breakdown, which

has been suggested with constant mobility &b+2 and
N=2 [11]; nevertheless, one observes a worse data collapse
) . . with respect to the casd=3 and 4 for largex, both fora

We present in the following the results of the numerical_q 5qqa=1. Forx=2, on the other hand, the collapse is
simulation of the casél=2. In Fig. 7, the behavior ot (t)  rather good. In Fig. 12, a comparison is presented between
IS plotted versus in the two casea=0 anda=1. .From this the quantityL(tM)‘dC(k,tM) (which, if scaling exists, cor-
figure we conclude that a power-law growth witk-4 or z responds to the scaling functipin the cases=0 anda

B.N=2

=6 fora=0 anda=1, respectively, fits the data very well. _ 1 pere one observes a superposition of the two curves for
Linear regression analysis fd)1>3QOO yieldsz=4.20 andz ~ y—> Forx> 2, however, they become more and more dis-
=6.26 fora=0 anda=1, respectively. tant with x. The situation is different from the casbbk=1

The structure factors at different times fa=0 and  gngN>2 where the scaling functions practically coincide in
a=1 are shown in Figs. 8 and 9, respectively. Here ongpe \yhole range ok values. From the observation of Figs.
observes again the formation of Porod’s tail, but, contrary 10,5 11 and 12 we argue that, far<2, the N=2 model
the casesN=3 andN =4, this pattern is maintained asymp- pehayes very similarly to the casis- 1 andN>2, since we
totically, a fact that reflects the stability of the topological finq 4 superposition of curves at different times in the scaling
defects in the late stage of the dynamics. In Figs. 10 and 1ﬂnlots (Figs. 10 and 11 and a very similar “scaling func-
the scaling plots forC(k,t) are presented. No compelling tion” for a=0 anda=1. Forx>2, however, one observes a
evidence can be obtained by the analysis of these figures

2.0

e——o N=2; a=0
s——= N=2; a=1 10 |

In [L(t)]
Gk
al

o—o t=5.45
e—at=17.15

0.0 . 107 b 3417 ]
&— 1=135.80
x—— 1=855.02
1o | +—*1=21390.47 _
1 L L —24 1 1
%0 0.0 5.0 10.0 107 07 107 10°
In(t) K
FIG. 7. The growth law of the characteristic lendtft) is plot- FIG. 9. The evolution ofc(k,t) is shown at different times for

ted against time for a system witi=2. Straight lines represent a=1 and N=2. The straight line represents a power-law decay
power lawst*? with z=4 andz=86. k™4
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clear if the origin of this difference is due to preasymptotic
effects in the simulations or to scaling violations.

In Fig. 13, the effect of a finiten, is considered and the
growth of the characteristic length(t) is shown vst for a
=1 both for critical and off-critical quenches. The asymmet-

ric quench is realized by takinm,=0.65A/2,

solution for the off-critical case has been obtained on a 25§,

10° 10’
X

FIG. 12. Comparison between the “scaling functions” f§r

k4,

=2 anda=0 or a=1. The straight line represents the power law

o . of a vectorial system quenched in the ordered region of the
much worse superposition in both cases. It is not presentl}shase diagram. This problem has been studied both numeri-

VY «. The

cally, by considering the cas&é=2, N=3, andN=4, and
analytically in the largeN limit, for critical and off-critical
guenches. We have shown that fa=1 the dynamics is
slowed down with respect to the case- 0, due to the van-
ishing of the mobility in pure phases. A power-law growth of
the typical lengthL (t)~t? is still obeyed in this case but
ith z=6. This behavior is exhibited in vectorial systems for

X256 lattice in order to speed up the computation since, ag| the values ofN considered and does not depend on the
the figure shows,_much longer times than in the crltlcal cas@ymmetry of the quench, nor on the presence of topological
must be reached in order to observe the asymptotic behaviogiefects. We conclude that this case falls within a different

For sufficiently long times one observes 6 in both cases,

universality class with respect to=0. For intermediate val-

suggesting that the same coarsening mechanism is at Wo[lag ofa the system behaves asdf=0 asymptotically but a
preasymptotic growth witte=6 is expected fora suffi-

ciently close to 1.
These features are very reminiscent of those of scalar sys-

both for critical and off-critical quenches.

V. CONCLUSIONS

In this paper we have considered the effect of an order
parameter-dependent mobility on the phase-ordering process | .

tems, where the dynamical exponent changes feen3 to

10 T T

(k.t)

S10° b o’

L(ty™

0 t=855.02
0 1=2700.32
o t=6775.87
A 1=1359.12
* 1=21399.47
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FIG. 11. Data collapséscaling ploj for a=1 andN=2. Here
L(t)"9C(k,t) is plotted againsk=kL(t) for different times.

0.0 5.0 10.0
In ()

FIG. 13. The growth law of the characteristic lendtft) is

plotted vst for a system withN=2, for a=1, for critical and off-

with z=6.

critical quenches. The straight line represents the powertiéw
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z=4 whena=1. It is, however, important to point out that ity classes fom=1 anda<1. This is perfectly analogous to
the scalar models studied in Ref8] and[4] are not per- what happens in the scalar case. Moreover, the scaling func-
fectly equivalent. The difference is in the form of the free-tions fora=0 anda=1 are identical. This leads us to con-
energy functional, which is of the Ginzburg-Landau typejecture that a mechanism of the same nature drives phase-
(quartic polynomial in Ref.[3] and of logarithmic type in ordering for all values of. The only special feature of the
[4]. While the polynomial can be seen as the expansion oA=1 case is that the mechanism is slowed down, exactly as
the logarithmic form forT not too far fromT_, for lower  for N=1 one goes from bulk diffusion to bulk subdiffusion,
temperatures only the logarithmic form provides a correcbut the nature of the mechanism is still of bulk type.
coarse-grained description of the microscopic dynamics. It would be interesting to check whether a sort of gener-
This is confirmed by what happens for off-critical quenchesalized surface diffusion exists fdd>1. This could be de-
to T=0. When the quench is sufficiently asymmetric so thattected by solving the equation of motion far=1 with a
the minority phase forms a nonpercolating pattern of isolatedbgarithmic free energy for a vectorial order parameter. An
droplets, surface diffusion alone cannot drive the phaseindication that this could be the case is provided by the ana-
separation to completion. The system therefore remainiytical solution of the largeN model with a logarithmic form
pinned in a configuration out of equilibrium. This pinning is of the free energy14].
correctly reproduced by the continuum equation with the
logarithmic free energy12]; no such pinning is found with ACKNOWLEDGMENTS
the quartic polynomia[13]. In this last case the deep off- . - ] o
critical condition has only the effect of changing bulk diffu-  F-C. is very grateful to M. Cirillo for his hospitality. We
sion to a slower mechanisnz£4), which has been referred thank C. Emmott for her useful remarks.
to as bulk subdiffusion. The dynamical exponent for bulk
subdiffusion turns out to be the same as that for surface APPENDIX
diffusion: We do not know whether this equality is acciden-
tal or has a deeper meaning.

In our study we have considered the generalization to a B1(%,0) =NY2m, + (x,1) (A1)
vectorial order parameter of the model with Ginzburg-
Landau free energy. Also in this case we find two universaland inserting into Eq(5), one obtains the pair of equations

s

1 N
XV[ = V0G0 =Ny — 00+ GINYm + 0] 25 5000

Defining the fluctuation fields(x,t) as

IINY2my +p(x,t)]
at B

v

N
%BEZ R0 +mi+ ¢2(x,t>+2N‘1’2m1¢(x,t>)]

3 1

+N1’2m§+3m§¢//(x,t)+N—1/2ml¢//2(x,t)+ Nl//?’(x,t)] , (A2)

N
sz [1—a(£2 ¢2(x,t)+m§+¢2(x,t)+2N1’2m11//(x,t))]
at NE=2
2 1 2 2, 2 1,
XV _V ¢B(X!t)_¢ﬁ(xit)+ﬁgz ¢a(xit)¢ﬁ(xat)+ ml+ N_:I./Zmll/,(x’t)—i_ﬁw (th) ¢B(X1t)
(A3)
with B+ 1.

In the largeN limit, summing over vector components averages the system over an ensemble of configurations and hence

1 1
lim 551(x,1)]?= lim Nﬁ; P(x,1) =(d5(x,1))=S, (1), (A4)

N— e N—

where translational invariance has been assumedsa(t) does not depend o due to the internal symmetry. To leading
order inN one obtains

AP(x,t)

= {1-alS () +miBVH[ - VZ-14S, () +3m]y(x.1)}, (A5)
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J 't
PO 1 e, (0 ML~ V2~ 148, (0 + M2l By (A6)

Introducing the longitudinal and transverse part of the structure factor, namékyt) = (¥ (k,t) ¥(—k,t)) and C, (k,t)
=(pp(k,t) pg(—k,t)), which is independent of3 due to internal symmetry and Fourier transforming, one obtains the

following pair of equations:

dCy(k,t) 2112 2 2
Tzz{l_a[SL(t)+ml]}k [—k“+1-S,(1)—3m7]Cy(k,1), (A7)
dC, (k,t) 2112 2 2
——=2{1-a[S, () +miPK —K*+1-S, () —m7IC, (kD). (A8)
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