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Phase ordering of conserved vectorial systems with field-dependent mobility
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The dynamics of phase-separation in conserved systems with anO(N) continuous symmetry is investigated
in the presence of an order-parameter-dependent mobilityM $f%512af2. The model is studied analytically
in the framework of the large-N approximation and by numerical simulations of theN52, N53, andN54
cases ind52, for both critical and off-critical quenches. We show the existence of a universality class fora
51 characterized by a growth law of the typical lengthL(t);t1/z with dynamical exponentz56 as opposed
to the usual valuez54, which is recovered fora,1. @S1063-651X~98!16609-6#

PACS number~s!: 05.70.Fh, 64.60.Cn, 64.60.My, 64.75.1g
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I. INTRODUCTION

The phase-separation kinetics of conserved syst
quenched from a high-temperature disordered state into
ordered region of the phase diagram is usually modeled
the Cahn-Hilliard@1# equation for the order parameter fie
f(x,t)5$fa(x,t)% ~with a51, . . . ,N),

]fa~x,t !

]t
5¹H M ~f!¹FdF~f!

dfa
G J . ~1!

In Eq. ~1!, F(f) represents an O(N) symmetric free-energy
functional with ground state inf2/N5(1/N)(a51

N fa
251

andM (f) is the mobility. Although in the original work of
Cahn and Hilliard a constantM was proposed, it has bee
subsequently argued@2# that, for scalar systems, a field
dependent mobility

M ~f!}12a~T!f2 ~2!

is more appropriate;a(T)→1 for temperatureT→0, while
a(T)→0 for T→Tc . For vectorial systems it is natural t
generalize Eq.~2!, considering a mobility

M ~f!}12a~T!
f2

N
. ~3!

Phase-ordering in the presence of nonconstant mob
has recently been studied withN51 @3,4#, showing a richer
behavior with respect to the usual case with constantM.
From a microscopic point of view it is easy to understand
existence of two different coarsening mechanisms in
separation of binary mixtures, which is the typical realizati
of a scalar conserved phase-ordering system. The first is
face diffusion, namely the diffusion of molecules along d
main walls in order to minimize the interfacial energy, and
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associated with a growth law of the domain sizeL(t);t1/z,
with z54. The second consists in the evaporation of m
ecules from large curvature regions of domain interfaces
their subsequent diffusion through the other phase towa
less curved interface portions. It is often called also Lifshi
Slyozov or evaporation-condensation mechanism; the gro
exponent isz53 @5#. Since bulk diffusion is an activated
process and surface diffusion is not, an interesting phen
enology occurs when the temperature is changed. For higT
~but still T,Tc), one observes only bulk diffusion (z53),
which is faster than the other mechanism. When the temp
ture is lowered, bulk diffusion is strongly suppressed due
its activated nature; it is therefore possible to observe
preasymptotic regime dominated by surface diffusionz
54). This crossover is reproduced by the continuum eq
tions with nonconstant mobility@3,4#, when the parametera
is varied. At the coarse-grained level of the continuum eq
tions, this again can be understood by observing that w
for shallow quenches (a!1) M (f) remains finite in the
whole system, the situation is different when deep quenc
are considered. Whena51, the mobility vanishes within do-
mains and suppresses bulk transport; sinceM (f).1 on do-
main boundaries, the motion of interfaces is instead un
fected.

Despite the formal analogy of Eq.~1! for scalar and vec-
torial fields, the underlying coarsening mechanisms are
principle different, as a consequence of the different symm
try of the ground state. However, forN<d one has stable
localized topological defects, of which domain walls are t
scalar counterpart. With constant mobility, defects play
vectorial systems exactly the same role of surfaces foN
51: Phase-ordering proceeds for long times by reduction
their typical radius of curvature~if they are extended! or via
mutual annihilation of defect-antidefect pairs~for point de-
fects!. This analogy, however, is not complete: It is not cle
what are in the vectorial case the coarsening mechani
corresponding to surface and bulk diffusion; it is not ev
clear that two different mechanisms must exist at all. F
thermore, whenN.d no stable localized defects are prese
4658 © 1998 The American Physical Society



tu

f
lts

s
tu

e

-
s

b-

a

e
ls
f
h
a

s o

l i

o

n

te
a

lu

e-

e

es
ri
nc

at

the

he
-
en
r-

e
the
ly

f
in-
, is

can
tric

-

try

ff.
n
-

ce

r-
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and the coarsening process has evidently a different na
even if the growth exponent is the same.

In this paper we consider the phase-ordering kinetics o
vectorial field with a nonconstant mobility. We report resu
obtained numerically ind52 for the caseN52, as a para-
digm of systems with topological defects, and the caseN
53 and 4, where stable defects are absent. We also s
analytically the soluble large-N model. Interestingly, we find
that the global picture is the same fromN52 up toN5`,
and perfectly analogous to the scalar case. More precis
while for a!1 the power growth lawL(t);t1/z is obeyed
asymptotically withz54, with a51 a new value of the dy-
namical exponentz56 is observed asymptotically, corre
sponding to a lower growth rate, in analogy with the ca
N51. For a&1, the z56 exponent is expected to be o
served preasymptotically before a crossover leads toz54.
These results are found both for critical and off-critic
quenches.

From these results it turns out that the similarity betwe
ordering in scalar and vectorial systems is very strong. A
for N.1, the dynamic exponentz is changed by the depth o
the quench in the presence of a nonconstant mobility. T
close analogy is not limited to fields supporting topologic
defects but is instead valid for any number of component
the order parameter.

The paper is organized as follows: In Sec. II the mode
described; in Sec. III the solution of the large-N model is
presented; in Sec. IV the results of numerical simulations
two-dimensional systems withN52, N53, and N54 are
presented and compared to the casesN51 and N5`; in
Sec. V we summarize the results and draw our conclusio

II. THE MODEL

We consider a system with a vectorial order parame
f(x,t) initially prepared in a configuration sampled from
high-temperature uncorrelated state with expectation va
^fa(x,0)&5N1/2ma and ^fa(x,0)fb(x8,0)&5Ddabd(x
2x8). For t>0 the time evolution is governed by the nois
less Langevin equation~1!, whereM (f) is given by Eq.~3!,
andF$f% is assumed in the Ginzburg-Landau form:

F$f%5E dxF1

2
u¹fu22

1

2
f21

1

4N
~f2!2G . ~4!

With these positions the equation of motion for the ord
parameter field reads

]fa~x,t !

]t
5¹H F12a

f2~x,t !

N G¹F2¹2fa~x,t !2fa~x,t !

1
1

N
f2~x,t !fa~x,t !G J . ~5!

The central quantity in the study of the dynamical proc
described above is the structure factor, namely the Fou
transform of the pair connected equal time correlation fu
tion, defined by

Ca~k,t !5^fa~k,t !fa~2k,t !&2Nma
2d~k!. ~6!
re,

a
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In Eq. ~6! and hereafter,̂ & means ensemble averages, th
is, over the stochastic initial conditions, since Eq.~5! is de-
terministic. If thema are equal~for critical quenches! all the
components of the structure factor are equivalent and
index a will be dropped.

III. THE LARGE- N MODEL

In this section we present the analytical solution of t
vectorial model in the limit of an infinite number of compo
nents of the order parameter field. Although it has be
shown@6# that the nature of the dynamical process is diffe
ent whenN is strictly infinite, the signature of this being th
multiscaling symmetry obeyed by the structure factor,
global picture provided by this model is often qualitative
adequate and predicts the correct dynamical exponentz for
N.1. Here it will be shown that the nontrivial behavior o
systems with nonconstant mobility, which is due to the
terplay between the different coarsening mechanisms
fully reproduced by the large-N model.

Let us consider a process where symmetry breaking
be induced along one direction by virtue of an asymme
initial condition

m1Þ0, mb50 $b52, . . . ,N%. ~7!

In the large-N limit the evolution equations for the longi
tudinal and transverse components of the structure factor~see
the Appendix! read

]C1~k,t !

]t
52$12a@S'~ t !1m1

2#%k2

3@2k2112S'~ t !23m1
2#C1~k,t !, ~8!

]C'~k,t !

]t
52$12a@S'~ t !1m1

2#%k2

3@2k2112S'~ t !2m1
2#C'~k,t !, ~9!

where C1 refers to the correlations along the symme
breaking direction,a51, andC' is the structure factor along
one of the equivalent transverse directions.S'(t) can be
computed self-consistently through

S'~ t !5E
uku,q

dk

~2p!d
C'~k,t !, ~10!

whereq is a phenomenological ultraviolet momentum cuto
Equation ~9! together with the self-consistency relatio

~10! governs the dynamics in the large-N model. These equa
tions apply to off-critical and critical quenches (m150) as
well; in the latter case only one equation is required sin
Eqs.~8! and~9! coincide. Notice that Eq.~9! for C' does not
contain C1 and, therefore, with a high-temperature diso
dered initial conditionC'(k,0)5D can be formally inte-
grated, yielding

C'~k,t !5De2k4L4~ t !1k2L 2~ t !, ~11!

where the lengths
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L~ t !5H 2E
0

t

$12a@S'~t!1m1
2#%dtJ 1/4

, ~12!

L~ t !5H 2E
0

t

$12S'~t!2m1
2%$12a@S'~t!1m1

2#%dtJ 1/2

~13!

have been introduced. For long times the structure facto
sharply peaked around

km5
L~ t !

A2L2~ t !
~14!

allowing a saddle point evaluation of the integral over m
menta in Eq.~10!, which yields

S~ t !;DL2d~ t !eL
4~ t !/4L4~ t !. ~15!

For long times, convergence towards thermodynamic e
librium requires the order parameter to approach the m
mum of the local part of the free energy~4!, which is for
f25N. Hence, settingS'(t).12m1

2 asymptotically in Eq.
~15!, one has

L~ t !.
L~ t !

@4d lnL~ t !#1/4
. ~16!

Two different cases must then be considered, namely,a,1
or a51. For a,1, one immediately obtains from Eq.~12!
L(t);t1/4, which yields L(t);(t ln t)1/4 due to Eq.~15!.
Hence the physical lengthL(t);km

21(t) associated with the
peak of the structure factor grows asL(t);@ t/ ln(t)#1/4. With
a,1, therefore, the asymptotic behavior is the same as f
large-N system with constant mobility@7#, as expected. No
tice the logarithmic correction with respect to the power-l
growth obeyed by systems with finiteN, which is due to the
multiscaling symmetry ofC(k,t); the dynamical exponen
z54 is known to be correct for all physical vectorial sy
tems.

Let us consider now the casea51. In this case, by match
ing Eqs. ~12!, ~13!, and ~16! one finds a different solution
characterized byL(t);t1/6 ~ln t!1/12 and L(t);t1/6(ln t)1/3,
which yieldsL(t);(t/ ln t)1/6. With a51, therefore, the van
ishing of the mobility in equilibrated regions slows down t
dynamics and changesz from 4 to 6, similarly to the scala
case where one goes from the Lifshitz-Slyozov evapora
condensation mechanism, associated withz53, to z54. It
must be noticed, however, that, apart from this analogy,
physics of the coarsening process is very different due to
absence of stable topological defects forN.d and there is
no clear indication of the nature of the transport mechan
associated withz56.

IV. SYSTEMS WITH FINITE N

In this section, we present the results of the numer
solution of Eq.~5!. Our aim is to present a rather comple
description of the effect of a nonconstant mobility in syste
with a different number of components and to compare
results with what is known forN51 and with the above
is
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discussed large-N model. In order to fulfill this program, we
have chosend52 andN52 or N53 and 4 so that we can
analyze systems with and without stable topological defe

The numerical solution of Eq.~5! is obtained by simple
iteration of the discretized equation on a 5123512 mesh,
except for the off-criticalN52, a51 case, which is com-
puted on a 2563256 lattice. Each quench is averaged ov
three different realizations of the initial conditions. The n
merical solution of Eq.~5! is particularly delicate fora&1,
because in this case a small error in the calculation off in
the bulk may give rise to a negativeM (f), thus producing a
spurious instability. We have avoided this problem by letti
M (f)5u12af2u, and tested that this does not produce a
significant difference in the results.

The characteristic growing lengthL(t) is obtained from
the structure factor asL(t)5k1

21(t), where

k1~ t !5

E dk kC~k,t !

E dk C~k,t !

~17!

is the first moment ofC(k,t).

A. N53 and N54

In Fig. 1, the behavior ofL(t) is compared in the two
casesa50 anda51, for critical quenches withN53 and
N54. After the linear instability is over@which corresponds
to times up to ln(t).4#, the system enters the asymptot
regime, which is characterized by a power-law growth
L(t). For a50 one hasz54 with good accuracy almos
immediately, while fora51 a convergence towardsz56 is
observed. Best-fit estimates for times larger thant53000
yield z53.92 andz53.89 for a50 and N53 and N54,
respectively; for a51, instead, one hasz55.68 and z
55.81 in the corresponding cases. We notice, by the w
the remarkable superposition of the curves withN53 and
N54.

FIG. 1. The growth law of the characteristic lengthL(t) is
shown for systems withN53 and N54. Straight lines represen
power lawst1/z with z54 andz56.
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It is interesting to observe the evolution of the structu
factor, which is shown in Figs. 2 and 3, forN53, at different
times for a50 anda51, respectively. Here one observe
immediately after the linear instability corresponding to t
exponential growth of a peak at constant wave vector,
formation of a rather well developed power-law decay
C(k,t) for large k; this tail is initially formed at very large
values ofk, subsequently it moves towards lower wave ve
tors and then gradually disappears as time increases, b
replaced by a faster~exponential! decay of the structure fac
tor. As Fig. 2 shows, the exponent of this decay is very cl
to 5 in accordance with the existence of a generalized
rod’s tail, i.e., C(k,t);k2(N1d) @8#. It is well known that
Porod’s tail is associated with the presence of localized
pological defects. The presence of such a tail in Figs. 2 an
suggests, therefore, that defects are formed at early time
eventually decay so that the power law disappears asymp
cally. This phenomenon is displayed, with similar featur

FIG. 2. The evolution ofC(k,t) is shown at different times for
a50 and N53. The straight line represents a power-law dec
k25.

FIG. 3. The evolution ofC(k,t) is shown at different times for
a51 and N53. The straight line represents a power-law dec
k25.
,
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both for a50 and fora51, and will be studied elsewher
@9#.

In Figs. 4 and 5, the data collapse forC(k,t) is presented.
Here, five curves corresponding to about 1.5 decades in
are superimposed by plottingL(t)2dC(k,t) against x
5kL(t). We observe that fora50 the data collapse is ver
good forx&2, whereas it becomes progressively less ac
rate for increasing values ofx. This effect is probably due to
the remnant of the power-law tail that, for the times cover
by the numerical solution, has not completely disappea
as can be seen from Fig. 2. In any case the data are cons
with the existence of the scaling property both fora50 and
a51. In Fig. 6, the scaling functions of the casesa50 and
a51 are compared. The scaling function is obtained here
L(tM)2dC(k,tM), tM being the longest time of our compu
tation. It has been shown in@4# that no significant differences
are observed in the scalar case between the two scaling f
tions, a fact that indicates the independence of the morp
ogy of the growing phases with respect to a change of
coarsening mechanism from bulk to surface diffusion. Fig

y

y

FIG. 4. Data collapse~scaling plot! for a50 andN53. Here
L(t)2dC(k,t) is plotted againstx5kL(t) for different times.

FIG. 5. Data collapse~scaling plot! for a51 andN53. Here
L(t)2dC(k,t) is plotted againstx5kL(t) for different times.
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6 shows that the same property is shared by our vecto
model. Notice also thatC(k,t);k4 for small k @10#.

B. N52

We present in the following the results of the numeric
simulation of the caseN52. In Fig. 7, the behavior ofL(t)
is plotted versust in the two casesa50 anda51. From this
figure we conclude that a power-law growth withz54 or z
56 for a50 anda51, respectively, fits the data very wel
Linear regression analysis fort.3000 yieldsz54.20 andz
56.26 fora50 anda51, respectively.

The structure factors at different times fora50 and
a51 are shown in Figs. 8 and 9, respectively. Here o
observes again the formation of Porod’s tail, but, contrary
the casesN53 andN54, this pattern is maintained asymp
totically, a fact that reflects the stability of the topologic
defects in the late stage of the dynamics. In Figs. 10 and
the scaling plots forC(k,t) are presented. No compellin
evidence can be obtained by the analysis of these fig

FIG. 6. Comparison between the scaling functions forN53 and
a50 or a51. The straight line represents the power lawk4.

FIG. 7. The growth law of the characteristic lengthL(t) is plot-
ted against time for a system withN52. Straight lines represen
power lawst1/z with z54 andz56.
al

l

e
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l
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es

about the possible existence of a scaling breakdown, wh
has been suggested with constant mobility ford52 and
N52 @11#; nevertheless, one observes a worse data colla
with respect to the caseN53 and 4 for largex, both for a
50 anda51. For x&2, on the other hand, the collapse
rather good. In Fig. 12, a comparison is presented betw
the quantityL(tM)2dC(k,tM) ~which, if scaling exists, cor-
responds to the scaling function! in the casesa50 and a
51. Here one observes a superposition of the two curves
x&2. For x.2, however, they become more and more d
tant with x. The situation is different from the casesN51
andN.2 where the scaling functions practically coincide
the whole range ofx values. From the observation of Fig
10, 11, and 12 we argue that, forx&2, the N52 model
behaves very similarly to the casesN51 andN.2, since we
find a superposition of curves at different times in the scal
plots ~Figs. 10 and 11!, and a very similar ‘‘scaling func-
tion’’ for a50 anda51. Forx.2, however, one observes

FIG. 8. The evolution ofC(k,t) is shown at different times for
a50 and N52. The straight line represents a power-law dec
k24.

FIG. 9. The evolution ofC(k,t) is shown at different times for
a51 and N52. The straight line represents a power-law dec
k24.
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much worse superposition in both cases. It is not prese
clear if the origin of this difference is due to preasympto
effects in the simulations or to scaling violations.

In Fig. 13, the effect of a finitema is considered and the
growth of the characteristic lengthL(t) is shown vst for a
51 both for critical and off-critical quenches. The asymm
ric quench is realized by takingma50.65/A2, ; a. The
solution for the off-critical case has been obtained on a
3256 lattice in order to speed up the computation since
the figure shows, much longer times than in the critical c
must be reached in order to observe the asymptotic beha
For sufficiently long times one observesz56 in both cases,
suggesting that the same coarsening mechanism is at
both for critical and off-critical quenches.

V. CONCLUSIONS

In this paper we have considered the effect of an ord
parameter-dependent mobility on the phase-ordering pro

FIG. 10. Data collapse~scaling plot! for a50 andN52. Here
L(t)2dC(k,t) is plotted againstx5kL(t) for different times.

FIG. 11. Data collapse~scaling plot! for a51 andN52. Here
L(t)2dC(k,t) is plotted againstx5kL(t) for different times.
ly
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e
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of a vectorial system quenched in the ordered region of
phase diagram. This problem has been studied both num
cally, by considering the casesN52, N53, andN54, and
analytically in the large-N limit, for critical and off-critical
quenches. We have shown that fora51 the dynamics is
slowed down with respect to the casea50, due to the van-
ishing of the mobility in pure phases. A power-law growth
the typical lengthL(t);t1/z is still obeyed in this case bu
with z56. This behavior is exhibited in vectorial systems f
all the values ofN considered and does not depend on
symmetry of the quench, nor on the presence of topolog
defects. We conclude that this case falls within a differe
universality class with respect toa50. For intermediate val-
ues ofa the system behaves as ifa50 asymptotically but a
preasymptotic growth withz56 is expected fora suffi-
ciently close to 1.

These features are very reminiscent of those of scalar
tems, where the dynamical exponent changes fromz53 to

FIG. 12. Comparison between the ‘‘scaling functions’’ forN
52 anda50 or a51. The straight line represents the power la
k4.

FIG. 13. The growth law of the characteristic lengthL(t) is
plotted vst for a system withN52, for a51, for critical and off-
critical quenches. The straight line represents the power lawt1/z

with z56.
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z54 whena51. It is, however, important to point out tha
the scalar models studied in Refs.@3# and @4# are not per-
fectly equivalent. The difference is in the form of the fre
energy functional, which is of the Ginzburg-Landau ty
~quartic polynomial! in Ref. @3# and of logarithmic type in
@4#. While the polynomial can be seen as the expansion
the logarithmic form forT not too far fromTc , for lower
temperatures only the logarithmic form provides a corr
coarse-grained description of the microscopic dynam
This is confirmed by what happens for off-critical quench
to T50. When the quench is sufficiently asymmetric so th
the minority phase forms a nonpercolating pattern of isola
droplets, surface diffusion alone cannot drive the pha
separation to completion. The system therefore rema
pinned in a configuration out of equilibrium. This pinning
correctly reproduced by the continuum equation with
logarithmic free energy@12#; no such pinning is found with
the quartic polynomial@13#. In this last case the deep of
critical condition has only the effect of changing bulk diffu
sion to a slower mechanism (z54), which has been referre
to as bulk subdiffusion. The dynamical exponent for bu
subdiffusion turns out to be the same as that for surf
diffusion: We do not know whether this equality is accide
tal or has a deeper meaning.

In our study we have considered the generalization t
vectorial order parameter of the model with Ginzbur
Landau free energy. Also in this case we find two univers
of

t
s.
s
t
d

e-
s

e

e
-

a
-
l-

ity classes fora51 anda,1. This is perfectly analogous to
what happens in the scalar case. Moreover, the scaling f
tions for a50 anda51 are identical. This leads us to con
jecture that a mechanism of the same nature drives ph
ordering for all values ofa. The only special feature of the
a51 case is that the mechanism is slowed down, exactly
for N51 one goes from bulk diffusion to bulk subdiffusion
but the nature of the mechanism is still of bulk type.

It would be interesting to check whether a sort of gen
alized surface diffusion exists forN.1. This could be de-
tected by solving the equation of motion fora51 with a
logarithmic free energy for a vectorial order parameter.
indication that this could be the case is provided by the a
lytical solution of the large-N model with a logarithmic form
of the free energy@14#.
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APPENDIX

Defining the fluctuation fieldc(x,t) as

f1~x,t !5N1/2m11c~x,t ! ~A1!

and inserting into Eq.~5!, one obtains the pair of equation
d hence

g

]@N1/2m11c~x,t !#

]t
5¹F H 12aS 1

N (
b52

N

fb
2~x,t !1m1

21c2~x,t !12N21/2m1c~x,t !D J
3¹H 2¹2c~x,t !2N1/2m12c~x,t !1

1

N
@N1/2m11c~x,t !# (

b52

N

fb
2~x,t !

1N1/2m1
313m1

2c~x,t !1
3

N1/2
m1c2~x,t !1

1

N
c3~x,t !J G , ~A2!

]@fb~x,t !#

]t
5¹F H 12aS 1

N (
b52

N

fb
2~x,t !1m1

21c2~x,t !12N21/2m1c~x,t !D J
3¹H 2¹2fb~x,t !2fb~x,t !1

1

N (
a52

N

fa
2~x,t !fb~x,t !1S m1

21
2

N1/2
m1c~x,t !1

1

N
c2~x,t !D fb~x,t !J G

~A3!

with bÞ1.
In the large-N limit, summing over vector components averages the system over an ensemble of configurations an

lim
N→`

1

N
uf~x,t !u25 lim

N→`

1

N (
b52

N

fb
2~x,t !5^fb

2~x,t !&[S'~ t !, ~A4!

where translational invariance has been assumed andS'(t) does not depend onb due to the internal symmetry. To leadin
order inN one obtains

]c~x,t !

]t
5$12a@S'~ t !1m1

2#%¹2$@2¹2211S'~ t !13m1
2#c~x,t !%, ~A5!
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]fb~x,t !

]t
5$12a@S'~ t !1m1

2#%k2$@2¹2211S'~ t !1m1
2#fb~x,t !%. ~A6!

Introducing the longitudinal and transverse part of the structure factor, namelyC1(k,t)5^c(k,t)c(2k,t)& and C'(k,t)
5^fb(k,t)fb(2k,t)&, which is independent ofb due to internal symmetry and Fourier transforming, one obtains
following pair of equations:

]C1~k,t !

]t
52$12a@S'~ t !1m1

2#%k2@2k2112S'~ t !23m1
2#C1~k,t !, ~A7!

]C'~k,t !

]t
52$12a@S'~ t !1m1

2#%k2@2k2112S'~ t !2m1
2#C'~k,t !. ~A8!
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